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a b s t r a c t

A numerical study of the liquid transfer processes that occur during micro-gravure-offset printing is car-
ried out. Specifically, liquid transfer between two parallel separating plates and between a trapezoidal
cavity and an upward moving plate are simulated, as models of the printing of ink from the offset pad
onto the substrate and the picking up of ink from the gravure plate by the offset pad, respectively. During
the liquid transfer between two parallel plates, the stretching, breaking and recoil of the liquid are illus-
trated, and the generation of a satellite droplet is observed. The influences of the separation velocity,
liquid viscosity, surface tension, gravity force, and contact angles on the liquid transfer are estimated.
For the transfer of liquid from the cavity to the upward moving plate, the findings indicate that the pro-
cess can be divided into three stages: (1) a whole stretching stage; (2) a central stretching, breakup and
recoil stage; and (3) an equilibrium stage. The final width of transferred liquid is closely related to the
contact angle at the upper plate, while the cut height is mainly affected by the contact angle at the cavity
side wall. The effects of the initial distance and cavity shape are also discussed.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The gravure-offset printing technique, which has traditionally
been used in the graphic printing industry to produce items such
as magazine covers and newspaper supplements (Gillett et al.,
1991), has recently received much attention as a potential method
for the cost-effective mass-production of micro-scale electrical cir-
cuits (Pudas, 2004). In gravure-offset printing, ink from an ink foun-
tain is first poured into the grooves of the gravure plate or roller, and
then excess ink is removed using a doctor blade. The ink in the
grooves is then picked up by a silicone rubber roller. Finally, the roll-
er is rotated over the target substrate, thereby transferring the ink
from the roller to the substrate. In some situations, such as printing
on non-planar surfaces, the silicone rubber roller is replaced by a
soft pad that moves vertically to transfer the ink to the surface.
Using a gravure plate and an offset pad as an example, a schematic
of the above three-step ink transfer process is shown in Fig. 1.

Various experimental studies have shown that gravure-offset
printing can be used to print narrow conductor lines with widths
on the order of micrometers (Mikami et al., 1994; Lahti et al.,
1999; Hagberg et al., 2001). However, the ink transfer efficiency
and print quality are affected by many factors, such as material
surface factors and ink factors (Elsayad et al., 2002; Pudas et al.,
ll rights reserved.

: +82 42 350 5027.
2004). Compared with experiment, numerical modeling provides
a more convenient and economic way to test the effects of certain
physical parameters, such as ink viscosity and surface properties
(hydrophilic or hydrophobic), and geometrical parameters such
as groove cavity shape and size. More importantly, numerical sim-
ulations can be used to study in detail the fundamental fluid
dynamics of the ink transfer process, which is hard to observe or
measure quantitatively in experiments.

Despite the potential advantages of numerical simulation over
experiment, few numerical studies have been performed on the
micro-gravure-offset printing process or related problems. Darhu-
ber et al. (2000) carried out numerical simulations using the Sur-
face Evolver software (Brakke, 1992), which takes into account
the liquid’s surface tension and the liquid–solid contact energy.
Steepest descent and conjugate gradient methods were imple-
mented for minimization of the total energy. Two numerical exam-
ples were presented: the equilibrium shape of the ink meniscus
between two parallel plates, and the equilibrium shape of the ink
meniscus between the stamp and the target substrate when a
small tilt of 2� is present. It should be noted that their simulations
assumed quasistatic printing and unconstrained contact line mo-
tion; hence, the results were only affected by the surface contact
angle, regardless of the properties of the ink. Powell et al. (2002)
developed a Lagrangian finite element algorithm to solve time-
dependent free surface flows. They first simulated stretching of a
viscous liquid filament between two flat plates. In these simula-
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Fig. 1. Schematics of gravure-offset printing: (a) filling ink into the grooves; (b)
picking up ink by the offset pad; (c) printing ink on the substrate.
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tions, the liquid underwent considerable deformation and the sim-
ulation was stopped when the filament became thinner than a cer-
tain threshold thickness. The second example was a Newtonian
liquid pulled from a two-dimensional upturned trapezoidal cavity
by a downward moving plate. These simulations assumed perfect
adherence between the liquid and the moving plate on which there
are two ‘static’ contact lines, but permitted local slip between the
liquid and the trapezoidal cavity walls at the dynamic contact
lines. Moreover, a simplified physical model of liquid withdrawal
from gravure cavities was proposed by Schwartz et al. (1998)
and Schwartz (2002) based on a lubrication model. Three-dimen-
sional unsteady liquid motion was simulated for a system in which
the flow domain was bounded above by a stress-free surface and
below by a moving substrate. Recently, Yin and Kumar (2005)
studied the flow between a cavity and a flexible wall using a 1D
lubrication model. In their model, the liquid flow is governed by
the Reynolds equation, while the flexible wall is linked to its equi-
librium position by Hookean springs and/or held by a uniform ten-
sion force.

In direct numerical simulations of the Navier–Stokes (N–S)
equations, the free surface between ink and ambient air can be
tackled by two techniques. One approach is the aforementioned
Lagrangian finite element method (Powell et al., 2002), which
has also been used to simulate the liquid drop formation process
typically seen in ink-jet printing (Wilkes et al., 1999). In this meth-
od, the grid is made to conform to the free surface and is stretched
as the liquid drop or filament is deformed. To achieve this, a struc-
tured remeshing is needed at every time step and the computation
has to be stopped at a certain threshold thickness of the ink fila-
ment before breakup. The other approach is the volume of fluid
(VOF) method, in which the full N–S equations are solved by finite
difference discretization on an Eulerian grid (Hirt and Nichols,
1981). Thus, in this method the free surface can move through
the grid, making it capable of handling the breakup of the liquid fil-
ament. Although the free surface is smeared over several grid cells,
the accuracy of this method has been demonstrated in various
studies (Scardovelli and Zaleski, 1999). Zhang (1999) showed that
numerical simulations of drop formation using the VOF method
were in good agreement with experimental results. In their simu-
lations, they studied the breakup process of the liquid filament and
the subsequent generation of satellite droplets. In the present
work, we employ the VOF method to simulate the liquid transfer
process that occurs in micro-gravure-offset printing. In the next
section we introduce the problem formulation and numerical
method. Numerical results are presented in Section 3, and a sum-
mary is given in Section 4.

2. Problem formulation and numerical method

For computational purposes, we consider ink transfer within a
simpler geometry than in the real micro-gravure-offset printing
process, as shown in Fig. 2. Fig. 2a shows the configuration for
ink transfer between a trapezoidal cavity and a moving plate, rep-
resenting the second step in the printing process at which the ink
is picked up by the offset pad from the grooves in the gravure plate
(Fig. 1b), and Fig. 2b shows the configuration for ink transfer be-
tween two parallel separating plates, corresponding to the third
step of the printing process at which ink is applied to the substrate
(Fig. 1c). The rationale underlying the simplifications made in the
present computational model is that the soft pad is initially
pressed tightly toward the gravure plate or the target substrate,
and the groove sizes are very small. Even for the offset roller, the
width of the contact area at the impression nip, although depen-
dent on rubber hardness and imprint pressure, is usually much lar-
ger than the groove sizes (Gillett et al., 1991).

The fluid flow in the present model contains both liquid and gas
phases, and has a moving boundary. For convenience, an integral
form of the governing equations is used to describe the fluid mo-
tion. Specifically, for an arbitrary control volume V with a closed
surface S (e.g. a computational cell), the equations for the conser-
vation of mass and momentum are written as follows, respectively:

o

ot

Z
V
qdV þ

I
S
qðu� ugÞ � ndS ¼ 0; ð1Þ

o

ot

Z
V
qudV þ

I
S
quðu� ugÞ � ndS ¼

I
S

s � ndSþ
Z

V
ðqg þ f ÞdV ; ð2Þ

where q is the density, u = (u,v) is the velocity vector, ug is the
velocity of the control volume surface S with its unit normal vector
denoted by n, s is the stress tensor, g is the gravity force, and f is the
surface tension force. For an incompressible flow, the stress tensor
is defined by s = �pI + l[ru + (ru)T], where p is the pressure, l is
the dynamic viscosity, and I is the unit tensor. Since the system of
interest contains free surfaces, the VOF method is used. Thus, a li-
quid volume fraction / is defined by

/ ¼
1; inside the liquid phase;
> 0; < 1; at the free surface;
0; inside the gas phase:

8><
>: ð3Þ

The position of the free surface can be determined by the passive
transport equation (Hirt and Nichols, 1981)

o/
ot
þ u � r/ ¼ 0; ð4Þ

which can also be written in the integral form by making use of
r � u = 0, as follows

o

ot

Z
V

/dV þ
I

S
/ðu—ugÞ � ndS ¼ 0: ð5Þ

Then the shape of the free surface is reconstructed by the second-
order piecewise linear interface construction (PLIC) scheme (Rider
and Kothe, 1998). For computational cells containing the free sur-
face, the density q and the dynamic viscosity l are calculated based
on the volume fraction /,

q ¼ /ql þ ð1� /Þqg; ð6Þ
l ¼ /ll þ ð1� /Þlg: ð7Þ

In the above Eqs. (6) and (7), the subscripts ‘l’ and ‘g’ denote the li-
quid and gas phases, respectively. The surface tension force is ex-
pressed by

f ¼ rjns; ð8Þ

where r denotes the surface tension coefficient, j denotes the local
free surface curvature, and ns = r//|r/| denotes the unit normal
vector of the free surface. The local curvature j can be calculated
from j = �(rs � ns), wherers denotes the gradient operator applied



Fig. 2. Computational geometrical configurations of ink transfer between (a) a trapezoidal cavity and a plate and (b) two parallel plates.
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along the direction tangent to the surface, as derived by Brackbill
et al. (1992).

The no-slip boundary condition is applied at the top and bottom
walls, and the left and right edges are treated as outlets where a
fixed pressure is given. In the computation, a symmetric boundary
condition is used at the center line to reduce the grid size by 50%
due to the symmetry of the system. At the solid boundary, a con-
tact line (see Fig. 2) is formed where the free surface meets the
wall. Although the no-slip condition is applied in solving the gov-
erning equations (Eqs. (1), (2), and (5)), the contact line is allowed
to move freely on the wall and the contact angle is kept constant in
the reconstruction of the free surface. In the present simulation,
the lower wall (plate or cavity) is fixed, while the upper wall is
moving vertically, as shown in Fig. 2. Thus, a grid deformation is re-
quired at each time step. As an example, Fig. 3 shows both the ini-
tial and final stages of the computational grid system between a
cavity and a plate; it is clear that the grid is stretched by the mov-
ing plate. The grid velocity at a particular instant is obtained from
the grid positions at two consecutive time steps.

The above governing equations, together with the boundary
conditions, are discretized by the finite volume method using a col-
located grid system. The pressure–velocity coupling is tackled
using the SIMPLEC algorithm (Van Doormaal and Raithby, 1984).
The checkerboard problem is circumvented by relating the velocity
at the cell interface directly to the local pressure gradient (Pericc
et al., 1988). A second-order upwind scheme is used to evaluate
the fluxes at the cell interface. The gravity force and the surface
tension force are included in the source term. The explicit Euler
scheme for time advancement is employed for the transport equa-
tion of / and the momentum equations. The resulting system of
algebraic equations is then solved directly or iteratively at each
time step.
Fig. 3. Computational grid system between a cavity and a plate at (a) the initial
stage and (b) the final stage.
3. Results

3.1. Liquid transfer between two parallel plates

To facilitate comparison with previous studies (Darhuber et al.,
2000; Powell et al., 2002), we regard the upper plate as the target
substrate in Fig. 2b, which is equivalent to moving the upper offset
pad and fixing the lower substrate (Fig. 1c) according to relative
motion. The parameters used in the present simulation are listed
in Table 1. The same parameters are selected in the following un-
less otherwise stated.

3.1.1. A liquid drop on a stationary plate
First we consider a liquid drop on a stationary plate, which cor-

responds to the state before liquid transfer. Initially a drop of rect-
angular shape is placed on the lower plate but detached from the
upper plate. Due to the surface tension, the drop takes on a circular
shape in the absence of gravity in order to minimize its surface
area. As shown in Fig. 4, the surface becomes a circular arc for
b = 45� and a half circle for b = 90�. The width and height of the li-
quid drop, denoted by wo and ho, respectively, can be simply de-
rived from the surface geometry,

wo ¼ 2 sin b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vo=ðb� sin b cos bÞ

q
; ð9Þ

ho ¼ ð1� cos bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vo=ðb� sin b cos bÞ

q
; ð10Þ

where Vo denotes the volume of the liquid. Here the angle in units of
radians rather than degrees is used in Eqs. (9) and (10), as well as in
the following equations. In our simulation, the width and height are
estimated by summing the volume fraction / along the appropriate
directions. Thus, we can obtain definite values of the width and
height, despite the fact that the free surface is not sharp in the
numerical simulation. Fig. 5 shows the values obtained for wo and
Table 1
Parameters used in the simulation of liquid transfer between two parallel plates

Density of the liquid, ql 1000 kg/m3

Dynamic viscosity of the liquid, ll 0.1 N s/m2

Surface tension coefficient, r 1 N/m
Density of the surrounding air, qg 1.16 kg/m3

Dynamic viscosity of the air, lg 1.81 � 10�5 N s/m2

Gravity acceleration, g 0
Separation speed, U 0.1 m/s
Plate length, L 20 lm
Volume of the liquid, Vo 32 lm2

Initial distance between the two plates, do 8 lm
Grid number in the horizontal direction, Nx 21
Grid number in the normal direction, Ny 41
Computational time step, Dt 0.02 ls



Fig. 4. Contour of the volume fraction of a liquid drop on a plate with a contact angle of (a) b = 45� and (b) b = 90�. The same contour legend for density is used in the
following. The width and height of the liquid drop are denoted by wo and ho, respectively.

Fig. 5. Variations of the width and height of the liquid drop with the contact angle.

Fig. 6. Instantaneous contours of the volume fraction of
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ho as a function of b in the present numerical simulations, as well as
the theoretical solutions (i.e. Eqs. (9) and (10), respectively). The
simulation results are in good agreement with the theoretical
curves.

3.1.2. Transfer process and parameter study
To simulate the liquid transfer induced by the upward move-

ment of one plate, a liquid filament of rectangular shape is ex-
tended between the two plates, which are initially separated by a
distance do. Before running the simulation with the moving plate,
we equilibrate the system with a fixed the upper plate. During this
preliminary step, the liquid filament is deformed due to its surface
tension and converges to its lowest-energy shape, which is then
used as the initial condition for the liquid transfer simulation.
Fig. 6 shows the transfer process using instantaneous contours of
the liquid between two parallel plates with b = 60�.



Fig. 7. Transfer ratio of the liquid between two parallel plates with b = 60� as a
function of a. The solid and dash lines denote the theoretical solutions under the
quasistatic assumption for symmetric and axisymmetric geometries, respectively.
Parameters for cases 1–6 are listed in Table 2.
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the volume fraction / for different a but constant b. Four time in-
stants are shown for each case, i.e. t = 0, 30, 60 and 90 ls. As time
progresses, the liquid filament is stretched by the upward moving
plate, while the contact lines are moving simultaneously due to the
surface tension. Finally the liquid filament is broken, and the com-
putation is stopped when the liquid drops on both plates attain
their equilibrium shapes. For a < b = 60� (Fig. 6a and b), more than
half of the liquid is transferred to the upper plate. Exactly half of
the liquid is transferred for a = b = 60� (Fig. 6c), and less than half
for a > b = 60� (Fig. 6d). In addition, during the breakup process, a
satellite droplet is generated. The formation of this droplet is sim-
ilar to the behavior observed during drop formation from a nozzle
or orifice (Zhang, 1999), which was found to be caused by the pro-
cess of double breakage of the liquid filament (Peregrine et al.,
1990).

Fig. 7 shows the final liquid transfer ratio for b = 60� as a func-
tion of a. The liquid transfer ratio is high for small a but decreases
rapidly when a is close to or larger than b. The system described
above (designated as Case 1) uses the parameters provided in Table
1. We now consider further four cases (cases 2–6), in which we
change the separation velocity U, the dynamic viscosity l, the sur-
face tension coefficient r, the volume of liquid Vo and the gravity
acceleration g individually, as listed in Table 2. The Reynolds num-
ber (Re ¼ qlU

ffiffiffiffiffiffiffiffiffiffiffi
Vo=2

p
=ll), the capillary number (Ca = llU/r), and

the Froude number (Fr ¼ g
ffiffiffiffiffiffiffiffiffiffiffi
Vo=2

p
=U2) are also given in Table 2.

From Fig. 7, we see that the final transfer ratio is decreased for
a < b but increased for a > b as the capillary number Ca increases
gradually from case 1 to case 4. Under the quasistatic assumption,
the final transfer ratio is independent of the separation velocity
and the liquid properties, and can be derived theoretically by

tr% ¼ f ðaÞ=ðf ðaÞ þ f ðbÞÞ � 100%; ð11Þ

where the function

f ðxÞ ¼
�p=4þ x=2þ cos x� sin x cos x=2; symmetric

�p=2þ xþ 2 cos x� sin x cos x� ðcos xÞ3=3; axisymmetric
;

(
x ¼ a or b
Table 2
Parameters used in the simulations of cases 1–6

U (m/s) l (N s/m2) r (N/s) Vo (lm2) g (m/s2) Re Ca Fr

Case 1 0.1 0.1 1.0 32 0 0.004 0.01 0
Case 2 0.2 0.1 1.0 32 0 0.008 0.02 0
Case 3 0.1 0.5 1.0 32 0 0.0008 0.05 0
Case 4 0.1 0.1 0.1 32 0 0.004 0.1 0
Case5 0.1 0.1 1.0 3200 0 0.04 0.01 0
Case 6 0.1 0.1 1.0 32 10 0.004 0.01 0.004
is a factor of the liquid volume which can be obtained by using the
property that the free surface has a circular shape. As shown in
Fig. 7, the deviation of the numerical results from the quasistatic
solution becomes larger as Ca increases. Data from Darhuber et al.
(2000), which are also included in Fig. 7 for comparison, show the
same tendency as the present data. The discrepancies between
the two sets of data are not surprising given that Darhuber et al.
adopted the axisymmetric condition and the quasistatic assumption
in their simulations. In addition, the effects of the liquid size and the
gravity force are negligible in cases 1, 5 and 6 in Fig. 7 since the Rey-
nolds number and the Froude number are small for all the cases,
indicating that the gravity force is much smaller than the inertial
force and the inertial force is much smaller than the viscous force,
which in turn is much smaller than the surface tension by consider-
ing also the capillary number (see Table 2).

Fig. 8 shows the time history of the minimum thickness of the
liquid filament (wm) during the transfer process. Here, a and b
are chosen to be the same, so the minimum thickness is at the mid-
dle of the filament. The data show that for smaller a and b, the ini-
tial value wm is smaller and decreases faster, since more liquid is
attached to the plates and the mid part is thinner. Especially, for
a = b = 90�, the liquid filament always has a rectangular shape;
thus a simple expression for wm can be obtained as follows:

wm ¼
Vo

do þ Ut
: ð12Þ

In Fig. 8, the present numerical results are in excellent agreement
with the theoretical expression (Eq. (12)) for a = b = 90�.

The final width of the liquid transferred to the upper plate (wt)
is plotted in Fig. 9 for various a and b. From Fig. 9a, we can see that
both a and b significantly influence wt. As a increases or b de-
creases, wt decreases monotonically. For a = b, the transfer ratio
is approximately 50%; hence wt can be estimated from Eq. (9) by
replacing Vo with Vo=2 and is equivalent to

wt ¼ wo=
ffiffiffi
2
p

: ð13Þ

The above relationship is plotted in Fig. 9b and shows good agree-
ment with the numerical result of a = b, indicating that the volume
of the satellite droplet is negligible.

In the above simulations we consider only Newtonian liquids.
However, in the printing of electronic circuitries, the conductor
ink is non-Newtonian because it contains a low percent of solvent
and a high concentration of solid particles, which results in a
shear-thinning rheology (Pudas et al., 2002). Here we adopt the
Carreau law to deal with the shear-thinning effect:

ll ¼ l0ð1þ ðk _eÞ2Þ
n�1

2 ; ð14Þ
Fig. 8. The minimum thickness of the liquid filament during transfer process
between two parallel plates with a = b = 30�, 45�, 60�, 75� and 90�. The theoretical
prediction is also shown for comparison.



Fig. 9. Width of the liquid on the upper plate at the end of transfer as a function of
a: (a) b = 30�, 45�, 60� and 75�; (b) b = a.

Fig. 10. Time histories of the width of liquid on the upper plate for Newtonian and
shear-thinning liquids with a = 30� and b = 60�.

Table 3
Parameters used in the simulation of liquid transfer between a cavity and a plate

Cavity open width, a 10 lm
Cavity depth, h 5 lm
Cavity bottom width, b 4.23 lm
Cavity incline angle, A 60�
Volume of the liquid, Vo 32 lm2

Initial distance between cavity and plate, co 1 lm
Grid number in the horizontal direction, Nx 81
Grid number in the normal direction, Ny 41
Computational time step, Dt 0.005 ls
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where l0, k and n are material coefficients, and _e ¼ ou=oyþ ov=ox
denotes the shear rate (Kennedy, 1995). In this simulation, we let
l0 = 0.1, k = 0.1 and n = 0.4. Fig. 10 shows time histories of the width
of the liquid on the upper plate (wt) for both Newtonian and shear-
Fig. 11. Instantaneous contours of the volume fraction of the liquid between two paral
liquid.
thinning fluids with a = 30� and b = 60�. The main difference ap-
pears during the breakup process, where wt is increased gradually
for the Newtonian fluid but sharply for the shear-thinning fluid.
Due to the small size of the present model and the large surface ten-
sion, a high shear rate is produced during the transfer process and
causes a significant decrease of the viscosity. The instantaneous
contours of the volume fraction / near the breakup time are dis-
played in Fig. 11. We see after breakup that the Newtonian fluid
is recoiled gradually toward the upper plate, while the shear-thin-
ning fluid is attached to the upper plate immediately. In addition,
more liquid droplets are generated for the shear-thinning fluid dur-
ing this fast breakup process.

3.2. Liquid transfer between a cavity and a plate

In this case, the fluid properties and the separation velocity are
chosen to be the same as those used in the simulations described
above, as listed in Table 1. The gravity force is also neglected.
The geometrical and computational parameters of the present
model (Fig. 2a) are summarized in Table 3. In the following simu-
lations, we may change one or two parameters in Table 3 for com-
parison as well as the contact angles, while the cavity opening
width a is always kept the same. The Reynolds number defined
by Re = qlUa/ll is 0.01, and the capillary number Ca = llU/r is also
0.01 for this case.

3.2.1. Stationary liquid within the cavity
Similar to the previous section, we first calculated the station-

ary shape of the liquid within the cavity, as shown in Fig. 12. For
this calculation, we set the initial liquid shape to be a trapezoid
with a volume of Vo = 32 lm2, which corresponds to 90% of the cav-
ity capacity. The shape of the liquid free surface is determined by
the contact angle c and the cavity incline angle A, which is 60� in
the present simulation. The free surface is concave for c < A
(Fig. 12a), perfectly flat for c = A (Fig. 12b), and convex for c > A
(Fig. 12c and d). According to the geometrical relationship, the cen-
lel plates with a = 30� and b = 60� for (a) Newtonian liquid and (b) shear-thinning



Fig. 12. Contour of the volume fraction of liquid in the cavity with a contact angle of (a) c = 45�; (b) c = 60�; (c) c = 75�; (d) c = 90�. The central height and the cut height are
denoted by hs and hc, respectively.

Fig. 13. Variations of the central height and the cut height of the liquid in the cavity
with the contact angle.

Fig. 14. Instantaneous contours of the volume fraction o
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tral height hs and the cut height hc of the liquid within the cavity,
as marked in Fig. 12d, can be expressed as

hs ¼ ha þ x sin A; ð15Þ
hc ¼ h� x sin A; ð16Þ

where ha denotes the arc height,

ha ¼ ðb=2þ x cos AÞ½1� cosðc� AÞ�= sinðc� AÞ; ð17Þ

and x is the positive root of the quadratic equation,

ðbþ x cos AÞx sin Aþ ðb=2þ x cos AÞ2F ¼ Vo; ð18Þ

with the coefficient F = [(c � A) � sin(c � A)cos(c � A)]/sin2 (c � A).
Eqs. (15) and (16) are plotted in Fig. 13. We see that both the central
height hs and the cut height hc increase as c increases. For c < 45�, hc

is zero since the contact line reaches the cavity upper corner. Good
f the liquid between cavity and plate with b = 60�.



Fig. 15. Time histories of the width of liquid on the upper plate (a) and the cut
height (b) with b = 60� and different c.
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agreement between the present numerical results and the theoret-
ical solutions is observed in Fig. 13.

3.2.2. Transfer process and effects of contact angles
Next, simulations of liquid transfer between the cavity and an

upward moving plate are carried out. The initial position of the li-
quid free surface is obtained by iteration after the liquid with the
same volume Vo is given attached to both the cavity and the upper
plate. At the next step, the upper plate is set to move vertically at a
speed of U = 0.1 m/s. The instantaneous contours of the volume
fraction / at four time instants, t = 0, 30, 60 and 90 ls, are shown
Fig. 16. Variations of the final width of liquid on the upper plate (a) and the
maximum cut height (b) as functions of b and c.
in Fig. 14, where b is fixed at 60o but different c values are selected
for comparison. As the plate moves upward, the liquid filament is
stretched until it breaks, after which the liquid recoils to the cavity
and the plate by surface tension. As c increases, the contact lines
move deeper along the cavity side walls. Moreover, the breakup
time is increased slightly for larger c, but the ratio of transferred
liquid is similar for all c. It is observed that the contact line is dif-
ficult to move on the inclined cavity side wall by liquid stretching
because a large surface tension force is required to compete with
the inertial force of the liquid below the contact line. Hence the li-
quid within the cavity is similar to that on a flat plate with a small
contact angle. As a result, the transfer process is weakly affected by
c and a satellite droplet is not generated in this case.

Fig. 15 shows time histories of the width of the liquid on the
upper plate (wt) and the cut height of the liquid on the cavity side
wall (hc). According to Fig. 15, the transfer process can be divided
into three stages. In the first stage (t < 40 ls), wt decreases gradu-
ally due to stretching, while hc increases at the beginning and de-
creases after reaching its maximum. In the second stage
(40 ls < t < 80 ls), wt and hc initially remain constant, indicating
that the liquid filament is only stretched in its central part, but sub-
sequently wt increases and hc decreases sharply due to recoil of the
liquid after breakup. In the final stage (t > 80 ls), both wt and hc

converge to their equilibrium values, and the transfer process is
finished. At the end of the transfer process, wt becomes slightly lar-
ger and hc increases as c increases.

The final wt and the maximum hc for different values of b and c
are collected in Fig. 16. As shown in Fig. 16a, the final wt decreases
as b increases, but the effect of c is insignificant. In particular, when
b > 60�, the final wt is the same for all c. On the contrary, the max-
imum hc increases obviously with increasing c, but decreases very
slightly as b increases except in the vicinity of b = 90� (see Fig. 16b).
The displacement of the contact line on the cavity side wall has
only a small effect on the fluid filament thickness during stretch-
ing, unlike the liquid transfer between two parallel plates. Hence
the final wt, as well as the liquid transfer ratio, depend only weakly
on c, although the maximum hc varies with c.
Fig. 17. Time histories of the width of liquid on the upper plate (a) and the cut
height (b) with b = c = 60� for different initial distance co.



Fig. 18. Instantaneous contours of the volume fraction of the liquid between cavity and plate with b = c = 60� and co = 0.5 lm.

Table 4
Comparison of the total volume of liquid, the transferred volume and the transfer
ratio for different cavity shapes

Total volume
(lm2)

Transferred
volume (lm2)

Transfer
ratio (%)

A = 60�, h = 5 lm 32.01 3.86 12.06
A = 75�, h = 5 lm 39.73 4.53 11.40
A = 90�, h = 5 lm 46.40 5.24 11.29
A = 75�, h = 10 lm 69.60 4.54 6.52
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3.2.3. Effect of initial distance
In the real printing process, the upper pad is pressed tightly

against the gravure plate before separation. In numerical modeling,
however, the geometry is singular if the plate and the cavity are
initially in contact. Hence, in our simulations, the cavity and the
plate are initially separated by a distance co. Here we select differ-
ent initial distances and compare the results with those obtained
using the value employed in the above simulations, co = 1.0 lm.
Fig. 17 shows time histories of wt and hc with b = c = 60� for co =
0.5 lm, 1.0 lm and 1.5 lm. The curves for all co systems have sim-
ilar shapes, but the curve for small co lags that for large co. The lag
time is approximately that required for the upper plate to move
from the small co to the large co. Since the capillary number is
much smaller than 1, the results are close to the quasistatic solu-
tions and the influence of the initial distance co is not significant.
However, the results for smaller co deviate from the quasistatic
solutions to a greater degree. As shown in Fig. 17, both wt and hc

are slightly increased at the end of the transfer process as co

increases.

3.2.4. Effect of cavity shape
Since the cavity opening width is kept unchanged, the cavity

volume is increased if the incline angle A increases. Hence, we ex-
pect that more liquid will be transferred to the upper plate for sys-
tems with larger A. Simulations with A = 60�, 75� and 90� are
carried out for comparison, and the instantaneous contours of
the volume fraction / are plotted in Fig. 18a–c. We fix the contact
angles at b = c = 60� and the initial distance at co = 0.5 lm for all
cases. The volume of the liquid Vo for A = 60� is kept the same as
in the simulations above, while for A = 75� and 90� the volume of
a trapezoid with the same height as that of A = 60� (Fig. 12b) is
used, as given in Table 4. As shown in Fig. 18a–c, at t = 0 the liquid
width on the upper plate is wider for larger A since the two cavity
side walls are more separated. As the plate moves upward, the
stretching, breaking and recoil of the liquid are similar for



Fig. 19. Time histories of the width of liquid on the upper plate (a) and the cut
height (b) with b = c = 60� and co = 0.5 lm for different incline angle A and depth h.

Fig. 20. Variations of the final width of liquid on the upper plate and the maximum
cut height with c = 60� and different b. The axisymmetric results are compared with
the symmetric ones.
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A = 60�, 75� and 90�. Time histories of the width wt and the cut
height hc, plotted in Fig. 19, show that wt increases with increasing
A but the rate of increase with A becomes smaller at the end of the
transfer process, while hc is similar for each case at the initial stage
but decreases more for larger A toward the end of the transfer pro-
cess. As a result, the volume of transferred liquid increases with
increasing A, but the transfer ratio decreases slightly due to the in-
crease of the total volume (see Table 4).

The effect of the cavity depth is also taken into account here.
The cavity with A = 75� but the greater depth of h = 10 lm is used
in the simulation, as shown in Fig. 18d. The liquid patterns during
the transfer process are almost the same as those of the system
with h = 5 lm, indicating that the liquid in the bottom of the cavity
has negligible influence on the liquid transfer. Fig. 19 also shows
that time histories of wt and hc for the h = 10 lm system coincide
well with those of the system with h = 5 lm. Since the transferred
volume of liquid is not increased by increasing the cavity depth,
the transfer ratio is lower due to the higher total volume of the
h = 10 lm cavity, as seen in Table 4. In other words, for the deeper
cavity, more residual liquid remains within the cavity, which may
cause the quality to deteriorate during repeated printing. Thus, in
manufacturing the cavity depth should be as small as possible,
while remaining greater than the maximum cut height.

To produce fine conductor lines in manufacturing electronics, a
groove-patterned gravure plate is used for printing, where the
present two-dimensional assumption is feasible. However, for a
complex pattern holes are also presented in the gravure plate.
Hence, we applied the axisymmetric condition in our simulations
to examine the geometrical effects. Fig. 20 presents the final width
of transferred liquid wt and the maximum cut height hc for both
symmetric and axisymmetric conditions. It is shown that both wt

and hc are decreased for the axisymmetric condition, and the dif-
ference is increased as b increases for a fixed c. As compared with
the symmetrical results of liquid transfer between two parallel
plates (see Fig. 7), the transfer ratio is increased for a < b and is de-
creased for a > b in the axisymmetric case, where the surface ten-
sion has a more prominent influence on the transfer process. For
liquid transfer between a cavity and a plate, it was observed in
Fig. 14 that the contact line on the cavity side wall is difficult to
move like that on a flat plate with a small contact angle. As a result,
the transfer ratio is expected to be within the a > b region of plate
to plate transfer as shown in Fig. 7. This conjecture is supported by
the results in Fig. 20.

4. Summary and discussion

In the present study, we have proposed a numerical model for
simulating liquid transfer during the micro-gravure-offset printing
process. In particular, the printing of ink from the offset pad onto
the substrate was modeled by liquid transfer between two parallel
separating plates, and the picking up of ink from the gravure plate
by the offset pad was modeled by liquid transfer between a trape-
zoidal cavity and an upward moving plate. The finite volume meth-
od was employed to discretize the continuity and momentum
equations and grid deformation technology was adopted for the
moving boundary. The VOF method was used to simulate the free
surface between the liquid and the ambient air, so the whole prob-
lem was solved on a structured grid system.

For liquid transfer between two parallel plates, the stretching,
breaking and recoil of the liquid were observed. During the break-
up process, a satellite droplet was generated. Effects of the separa-
tion velocity, the liquid viscosity, the surface tension, the liquid
size and the gravity force on the liquid transfer were estimated.
Increasing the separation velocity or the liquid viscosity, or
decreasing the surface tension, leads to a decrease of the transfer
ratio for small contact angles at the target plate, but has the oppo-
site effect for large contact angles at the target plate. It was found
that the transfer ratio deviated from the theoretical quasistatic
solution as the capillary number increased. An examination of
the effects of the contact angles revealed that the width of the li-
quid transferred decreased as the contact angle at the upper plate
increased or that at the bottom plate decreased. Although in the
present simulations the surface property was only represented
by contact angle, we have to mention that other important phy-
sic-chemical properties should be taken into account for reality
and are difficult to model, such as the surface absorbance which
makes it possible for 100% transfer (Pudas et al., 2002). Further-
more, we considered the non-Newtonian rheology of conductor
ink and a shear-thinning fluid was simulated. The results showed
a much faster breakup process due to the shear-thinning effect. Be-
side of this, most inks display viscoelastic behaviors which may af-
fect the transfer process significantly (Yu et al., 2007).

The transfer process from the cavity to the upward moving
plate can be divided into three stages: (1) a whole stretching stage;
(2) a central stretching, breakup and recoil stage; and (3) an equi-
librium stage. The effects of the contact angles on the final width of
transferred liquid and the maximum cut height were examined.
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The final width of the transferred liquid decreased as the contact
angle at the upper plate increased, but varied only slightly for dif-
ferent contact angles at the cavity side wall. On the contrary, the
cut height increased as the contact angle at the cavity side wall in-
creased, but showed only a weak dependence on the contact angle
at the upper plate. We additionally showed that as the cavity in-
cline angle increased, the transferred liquid was increased, while
the transfer ratio was slightly decreased due to the increased total
volume at large incline angle. The axisymmetric condition was also
examined, where the surface tension played a more prominent role
as compared with the symmetric case. As a result, the transferred
liquid was usually decreased since the liquid on the inclined cavity
side wall behaved like that on a flat plate with a small contact an-
gle. The initial distance between the cavity and the plate was
shown to have only a small influence on the transfer process due
to the small capillary number. In the practical printing, the soft
pad is pressed tightly against the gravure plate and a high impres-
sion pressure plays a significant role in improving the transfer ra-
tio. However, such effects cannot be modeled in the present
numerical simulation. On the other hand, both the impression
pressure and wall deformation can be tackled using the lubrication
theory (Yin and Kumar, 2005), while other properties like contact
angle and surface tension were neglected. It is desirable to formu-
late the impression pressure and wall deformation based on the
full Navier–Stokes solver in our future work.
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